Browser-Based Distributed Computing
CMPSC 450 - Mini Project

Yuya Jeremy Ong
yjo5006@psu.com

1 INTRODUCTION

Recently, high performance systems have been utilized in various
applications within domains of scientific computing, processing of
complex simulations, solving optimization problems, and most re-
cently areas in machine learning and deep learning. The majority of
these high-performance systems today are compiled and built on a
centralized and monolithic infrastructure where machines are typi-
cally based on server-grade level hardware designed specifically for
high-performance scientific computing. They have become one of
the primary drivers for breakthrough innovation and development
to be delivered within the scientific community.

Although, many of these state-of-the-art systems are very power-
ful and are capable of helping scientists, researchers, and engineers
to help perform complex tasks, the development, maintenance, and
especially the cost for these systems are particularly expensive.
Much of the cost of these systems are rooted at the purchasing of
expensive systems as well as the cost of maintaining them.

Recently, with the ever growing number of powerful commodity
based hardware, such as desktops and laptops equipped with Core
i7 Intel processors, or mobile phones with improved processors
for computation, we find that these systems independently are
capable of running very complex computational problems even
on such small devices. However, many of the applications that are
often utilized by these consumers do not take advantage of the
full hardware capability, leaving many people with often times idle
CPU cycles. Majority of the consumers make use of the use cases
for these commodity machines often use them for web browsing -
using browsers such as Google Chrome and Firefox to visit various
resources and content online. Over the course of their usage habits,
average users of such devices mostly uses computers to browse the
web, which often doesn not incur many CPU cycles (unless many
tabs were present).

According to a recent study conducted by the Miniwatts Market-
ing Group [7], globally there are approximately close to 4,156,932,140
Internet-connected devices. If we assume that the average computer
(having an Intel 17 920 2.8 GHz processor as our "average" device)
clocks in around 6.3 x 1010 FLOPS, the theoretical upper bound
for the amount of computational power in total would amount to
approximately 2.7 X 1020 FLOPS, which would be 0.27 ZFLOPS.

In short, this opens a window of opportunity for researchers and
engineers who can make use of these idle CPU cycles and aggregate
them together into a network of one cohesive architecture to per-
form various computational problems within a distributed setting.
By making using a browser as an endpoint for computation, this
allows a much more open, dynamic, and mostly platform agnostic
system which can take advantage of the ubiquity of today’s general
computing infrastructure.

In this paper, we explore a novel distributed computational plat-
form called Queen [3], which makes use of the front-end browser

computational power powered by Javascript to perform various
computational processes. The library includes several different APIs
and functionalities which helps developers and users to facilitate
message passing between each of the worker browser nodes and
the master node. Specifically we will first explain and dive into
the general system architecture of how Queen was developed and
is operated. Then we will look into the typical development pro-
cess of how one would build a program using the Queen platform.
Furthermore, we evaluate a key experiment with the . Finally, we
end our paper with an analysis of some of the comparisons to ex-
isting state-of-the-art distributed computing systems such as MPI,
and point out some key merits and demerits of utilizing such an
infrastructure for scientific computing applications.

2 QUEEN PLATFORM

In this section, we describe the Queen platform and some of the key
features and system architecture of the system. This section will
provide some context and background into which how the system
is built and how it works.

2.1 Introduction to System

The Queen platform is based on an open-sourced project by @un-
setbit, which has been first publicly available around 5 years ago [4].
According to the introduction README, it claims that it is a "server
which is capable of brokering socketed communication between
browsers which are connected to it and other applications or scripts.
You can think of the Queen Server as a pool of browsers which you
can execute code on. Taking the abstraction further, you can think
of Queen Server as distributed execution platform using browsers
as computation nodes." In essence, Queen acts as a browser pooling
and resource orchestration platform which relies on the connection
of browsers providing the computational resources which they are
sent back to a centralized server node.

2.2 Features

We now describe some of the key features which the Queen plat-
form offers as a distributed browser-based computational pooling
resource platform. Here, we describe some of the highlighted fea-
tures and also interject how they may be useful in certain scenarios
or particular use cases.

First, Queen being a platform for orchestrating computational
resources and operations make use of socket.io [6], a framework
for developers to help writing applications which requires asyn-
chronous communication over a TCP network. The API provides
an interface which allows bidirectional communication between
the worker providers, worker instances, and the queen server. As
this project makes use of the Socket.io interfaces, it is also possible
to facilitate inter and intra node communication between other



workers or worker providers, which can facilitate similar forms of
communication like the MPI protocol does.

Another feature which is provided by the Queen platform is
their ease of integration with existing libraries, packages, and
any projects which makes use of the JavaScript language. Mod-
ern JavaScript has evolved in many ways to the point where there
have been active development of packages and libraries people
can utilize for specific applications, such as linear algebra, signal
processing, and most recently Deep Learning with the release of
TensorFlow.js from Google. This makes it also another highly com-
petitive platform against some of the other architectures where
dependencies and infrastructure setup is a very tedious process.

As the particular infrastructure that we our working is comprised
of a heterogeneous set of hardware and browser with various spec-
ifications and configurations, the challenge of matching hardware
constraints is a very challenging task at hand. However, by lever-
aging various meta-data provided by the browser’s User-Agent
information or frameworks such as Modernizr [2] which offers rich
understanding of hardware metadata and browser specifications.
One of the major bottlenecks to many of the designs of supercom-
puting infrastructure relies on the unified nature of the hardware
and requires to often have similar specifications across each of the
nodes. In many distributed systems today, the transfer of knowing
the hardware specification is also not provided, which makes also
makes such distributed system much more intelligent than some of
the traditionally existing architectures that are out there today.

One of the main key features which makes Queen a very robust
distributed system is having the ability to automatically connect
to browsers using various emulation tools such as Selenium [5].
Making use of such systems would allow as a better sandboxed
environment for browsers to perform computation on - which can
mitigate potential security risks and compatibility issues which
may arise due to browser version differences. This helps to normal-
ize version controls across different dependencies certain which
programs may use depending on the environment the developers
originally developed it for.

The Queen infrastructure also provides a very good robust con-
trol mechanism which allows you to utilize their Queen thin-client
which enables users to run scripts remotely to these clusters. Fur-
thermore, the Queen provides mechanisms for error handling and
unresponsive node endpoints. The platform enables workers that
are unresponsive to automatically recover and resumes the jobs
that have been provided to them immediately.

2.3 System Architecture

The architecture of Queen, to some extent is very reminiscent of a
grid-computing infrastructure similar to that of the SETI@HOME
project which makes use of the BIONIC [8] computational platform.
The BIONIC platform was developed in part of a large peer-to-
peer public-resource computing system. The BIONIC system works
through first establishing a master node whose responsibility is to
supplement the corresponding data and code to the worker nodes.
The worker nodes would then download the corresponding client
on the node and complete small distributed tasks assigned by the
master node and send back the computed results, which the whole
process is then repeated again for any incoming new set of data.

The only major difference between the BIONIC architecture and
the Queen architecture is how the system makes use of a browser
based browser based daemon, instead of a dedicated program which
has to be setup and compiled locally on the client’s machine. This
provides for a higher advantage with regards to on-boarding as
majority of systems today already are equipped with a web browser
capable of executing pieces of code which can be provided by the
master node.

Finally, the entire development ecosystem is surrounded based
on JavaScript and HTML, which makes for the entry to barrier in
terms of using the system very accessible. With a solid package
management system offered by npm (a library package management
system for the JavaScript environment), users can quickly iterate
and develop complex programs building on top of wealth of various
code bases from existing projects and scaling them accordingly.

Figure 1: Queen System Architecture
QUEEN SERVER

« « A 'S
WORKER PROVIDER WORKER PROVIDER WORKER PROVIDER WORKER PROVIDER

N o BN NN [

WORKERS WORKERS WORKERS WORKERS

WORKFORCE

Looking at Figure 1, we can see the general architecture of the
system and the various interactions between the various compo-
nents which handles the computation to the resource orchestration
process. The Queen Server is a system which helps to aggregate all of
the worker nodes into one central location. This acts as the primary
hub for where all of the computational resources are centralized at
a single point. The essential role of this server is to create what is
known as the Workforce, which is a collection of Worker Providers,
which are the individual computational systems (i.e. desktops, lap-
tops, mobile phones, etc.). Within each of the Worker Providers, or
a browser page, the browser would execute multiple small iframes
known as Workers which contains a sandboxed environment for
specific tasks that the computational node would perform at the
front end.

The Queen’s primary server is written in Node.js, and can be
executed through a command line interface which is then run as a
daemon process that initializes two server applications. The first
one is a browser based web application which runs on one port - this
is the front end in which the worker provider will access and use
to communicate with the queen server. Furthermore, another port
is opened to be used internally to bind the capture server to. The
page browser acts as merely an interface for signaling a websocket
connection between the server and the client nodes, where further
communication is then facilitated.



3 DEVELOPMENT PROCESS

In this section, we outline the development methodology for a
typical program which would leverage this type of platform. In
particular, we look at the two key components which Queen uses
for it’s distributed program.

3.1 Program Structure

To execute a job in Queen, we develop what is referred to the
developers of the platform as "Queen Scripts". For every Queen
application, there are essentially two key components which de-
velopers must build out: the queen server and the client worker
programs. The queen server’s program is responsible for manag-
ing the orchestration of how the data and operations are passed
around. The other program component necessary for the Queen
Script requires a client end program, for which each node on the
client would run a particular type of job.

Although, the level of abstraction provided by the Queen plat-
form is not as sophisticated as that of the MPI interface, it still
provides a powerful channel and number flexibility to define rou-
tines which allows you to take advantage of multiple machines
simultaneously.

3.2 Server Script

The server side script within the Queen platform simply is based
on a configuration file which the user can edit. Within this script,
the user must provide an endpoint for where the client-side script
resides (as a another web-resource on a separate web server). Fur-
thermore, the configuration provides options as to how the workers
should operate the script execution process and whether to continue
with a new batch or simply end execution with the corresponding
worker node. Finally, the user will have to define a specific type of
event handler which is executed prior to the initialization of the
program on the worker client. This routine is meant as a method
for passing any sort of relevant dataset or pieces of instructions
or key parameters the program would need prior to executing the
script. The Server API provides access to all components of the
Queen Platform including, but not limited to the Queen instance,
Workforce, Worker, and WorkProvider instances.

3.3 Worker Script

The worker client script that the developer must write for the Queen
script is simply a message handler for the onHandle message for the
queenSocket which is injected within the iframe worker instance
during runtime of the application. Through this code injection, the
front end of the given worker can use this as a method to perform
the given task that we assigned it by treating the new incoming
data signal as a new task is provided by the server side script.

4 NETWORK LATENCY EVALUATION

In this section we outline an experimentation process to evaluate
the performance of the Queen distributed computational platform.
In particular, one of the most obvious bottlenecks we can find from
such a platform is the amount of network latency such system can
potentially pose for data communication between the queen server
and the worker nodes.

The experiment we conducted in this project was based on a
simple data transfer ping-pong routine. We attempted to measure
the average time to measure an array of integers being transfered
from one node to another. We evaluate the performance by varying
the number of integers to send and compute the average time
it takes for each node to completely transfer the data back and
forth. We believe that this experiment is significant in looking into,
as network transfer is one of the most expensive bottlenecks to
consider when developing such applications. Therefore, we are
interested in seeing how such system would work in a realistic
desktop environment where we also take into account various
factors such as external network traffic and real-world network
latency factors.

4.1 Evaluation Environment

In this section we describe the experimental cluster environment
that we have used to obtain our measurements. For our Queen
server, we have deployed the daemon on the aci-i cluster running
on the port 9300. However, since the aci-i node does not enable
users to open ports externally outside of the Penn State firewall,
we used ngrok [1] to expose the corresponding port environment
outside of the aci-i cluster environment so that people externally
can access the client-end site.

Then, we needed another server to host our client-end worker
task JavaScript file. For this, we utilized a XAMPP Apache based
sever on a Mac Book Pro, also using ngrok to expose a port outside
to enable external compute nodes to access the source code they
would be processing on. In this case, the hosting of the worker
node source code could have been merged together with the aci-i
node resources, however, we made the assumption that some of the
source would be served on another server or a CDN based system
independent of the Queen server.

For our worker providers, we utilized several different desktop
workstations in the Pattee Libary Media Commons at Penn State
University - logging into approximately 10 machines in the middle
of the night around 3:00 AM. Each workstation tower is based on a
Dell OptiPlex 7050 mini tower which is powered by an Intel Core
i7-6700 @ 3.4 GHz with 16 GB of RAM running Windows 10. For
each computer, we opened a Google Chrome browser which opened
a page pointing to the worker provider page served by the aci-i
Queen server.

4.2 Results

We subsequently collected data of this ping-pong routine for 10
mini desktop tower nodes and computed the average runtime for
each of the following nodes. We performed this analysis for each
different values of N starting with 1000 and subsequently increasing
each interval by 1000 up to 20,000 elements. For this analysis we
have pushed only a small amount as we have tested for extreme
values such as 1,000,000 elements - however the system refused to
initialize or the worker nodes did not respond (and got killed off by
the Queen server) due to the lack of memory support.

We plot our empirical observations based on the data we have
collected and graphed, as shown on Figure 2. On the x-axis, we
have the number of integer elements we transfered between the
Queen node and the worker nodes. On the y-axis we show the



corresponding execution wall-time in milliseconds for the entire
transfer operation of the data sending and receiving back.

Figure 2: Data Transfer Network Latency Results
Avg. Data Transfer Latency Between Queen and Worker Nodes

1000

900

800

700

600

500

—e—Avg Time

Time (miliseconds)

300
200
100

0 5000 10000 15000 20000 25000 30000 35000
N

Based on the figure we have generated, there are several key
salient observations we can make and draw conclusions from. First,
we can see that the firs 5000 elements has a constant transfer time
of approximately 100 ms. However, beyond the point of N = 5000,
we find that the time grows in a linear fashion as the data scales
into a larger size. Another interesting point to note is the amount
of variability in the measurements we found at approximately close
to 30,000 elements. For these numbers we have performed multiple
repeated sets of experiments on this particular interval of integers,
however found the dip to still be present. We believe that this may
have been caused due to either how Socket.io handles data packet
transfers of a certain size or that there were external traffic amongst
the other computers who were on the network also influencing our
empirical observations.

5 DISCUSSION

In this paper, we have explored a the use of a novel and unorthodox
architecture for a distributed computing platform which utilizes
a different configuration for how computation is performed. Al-
though, we find this architecture to be a very novel and interesting
study, the practical use of the system is far from usable against
some of the state-of-the-art systems which are present today.

As mentioned earlier and based on our empirical observations,
the primary problem with such an architecture is based on the
network latency of the system. As the hardware architecture is not
based on a monolithic architecture, we find that the major weak-
ness with a distributed system with such configuration is counted
on attempting to reduce the overall amount of latency present in
the system. However, considering the fact that this package was
developed and last maintained about 5 years ago, we can make use
of this similar architecture and improve the framework and library
choices proposed by the original developers and instead opt for a
WebRTC based method for inter-node communication. WebRTC
utilizes a UDP based communication protocol instead of a TCP
based method, which allows for ultra-low latency and fast commu-
nication speeds. It has been utilized in areas such as VoIP systems

and has been fully implemented in video conferencing systems
such as Google Hangouts. Furthermore, through the integration
of other libraries and frameworks like WASM or Web-Assembly
and WebCL, we can further optimize the code to take advantage of
hardware-level optimizations to improve the speed of computation
individually on the nodes themselves.

6 CONCLUSION

In our paper, we have introduced, evaluated, and experimented on
the Queen Browser-Based Distributed Computational Platform. We
have introduced the primary system architecture, development pro-
cess, as well as some of the potential caveats it holds with regards to
the network latency issues and how it can be potentially mitigated.
We hope in the future, we can make use of this similar architecture
to better improve on this system and actualize an improved version
of the Browser-Based Distributed Computational System to make
use of the commodity hardware at a global scale.

REFERENCES
d]. ([n.d]).

]. Modernizr. https://modernizr.com/. ([n. d.]).

]. Queen. http://unsetbit.com/queen/. ([n. d.]).

]. Queen - Github Repository. https://github. com/unsetblt/queen/ ([n. d.]).

n. d.]. SeleniumHQ. https://www.seleniumhgq.org/. ([n. d.]).

n. d.]. Socket.IO. https://socket.io/. ([n. d.]).

[n. d]. World Internet Users and 2018 Population Stats.
internetworldstats.com/stats.htm. ([n. d.]).

[8] David P Anderson. 2004. Boinc: A system for public-resource computing and stor-
age. In proceedings of the 5th IEEE/ACM International Workshop on Grid Computing.
IEEE Computer Society, 4-10.

n.

=]

(] [n.
(2] [n.d.
(3] [n.d.
(4] [n.d.
(5] [n.d.
(6] [n.d.
(71

https://www.


https://modernizr.com/
http://unsetbit.com/queen/
https://github.com/unsetbit/queen/
https://www.seleniumhq.org/
https://socket.io/
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm

	1 Introduction
	2 Queen Platform
	2.1 Introduction to System
	2.2 Features
	2.3 System Architecture

	3 Development Process
	3.1 Program Structure
	3.2 Server Script
	3.3 Worker Script

	4 Network Latency Evaluation
	4.1 Evaluation Environment
	4.2 Results

	5 Discussion
	6 Conclusion
	References

